ABCDV网站

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 2594|回复: 6

各位大人们好,我是学化学的

[复制链接]
发表于 2004-10-28 21:39:12 | 显示全部楼层 |阅读模式
还有一个月就要审核了,我学了300小时,选择的英德双语。
感觉德语学的很不扎实,恐怕只能背一篇介绍了....
各位大人介绍一些化学应该如何准备的经验吧,有没有这方面的试题
小弟这里万分感谢!!
发表于 2004-10-29 19:24:33 | 显示全部楼层
An element is composed of atoms 元素由原子构成
All atoms of a given element are the same.  Atoms of different elements are different and have different properties. 同种元素的原子相同,不同元素的原子不同
Atoms are not changed, created or destroyed in a chemical reaction. 原子不带电。原子不灭。
Compounds are the combination of more than one element. A given compound has the same relative number and kind of atoms. 一种以上的原子可形成化合物。
Some backgrounds about Atom背景介绍
Electron 电子
Proton and Neutron质子与中子
scattering experiment 散射
Scattering of alpha particles by gold foil 考察粒子在金箔上的散射。
Most particles were undeflected 发现大多数粒子未偏转。
Some were deflected by large angles 一部分粒子偏转。
The nuclear  atom model有核原子模型
Electromagnetic radiation电磁辐射
Units for wavelength波长单位
Line spectra of hydrogen atom氢原子线状光谱
Sharp Line Spectra of hydrogen氢原子的锐光谱
Rydberg Equation里德堡公式
Bohr Model for Hydrogen Atom玻尔理论
Max Planck and his constant h 普郎克常数h
Compare the potential energy of a brick on a staircase  to one on a slope 比较斜坡上与楼梯上砖块的势能。
Bohr suggested: 玻尔假设
the electron moves around the nucleus in circular orbit. So, the atom is in the stationary state. 电子绕核作圆周运动,处于定态。
The energy of the electron was assumed to restricted to certain values. Atom with the lowest energy is in the ground state; when it picks up energy, it moves to  an excited state电子的能量限于定值,原子处于能量最低的状态——基态。受激后,到达激发态.
Bohr further suggested: 玻尔假设
The different orbits the electrons occupy have different energies. These discrete energies identified by n is called energy level 不同轨道上电子的能量不同,且不连续,称为能级,计作n。
The atom in an excited state is unstable. It drops back to a lower energy level or ground state as it gives off a photon. This is called the transition. The energy of the photon evolved equals to the difference in energy between the two states. 激发态的原子不稳定,回到能量较低的轨道或基态时,释放光子,称作跃迁。两轨道的能级差等于光子的能量
Bohr calculated: 玻尔理论



Bohr’s Atom 1913 1913年玻尔理论
Electrons move in orbitals with specified radii. 电子处于一定半径的轨道上。
Each orbital is associated with a specific energy. 每个轨道具有一定的能量。
This explains why atoms emit (or absorb) light of well-defined frequency. Examples: the yellow sodium street light and the neon tube. 玻尔理论成功解释了原子光谱,例如马路两旁黄色的钠灯,霓虹灯。
Bohr’s atom model suitable for all elements?玻尔理论的障碍
Quantum  Mechanics Explanations on hydrogen Atom 量子理论
Special properties of the electron movement
电子的性质
Wave or Particles?波粒两像性
Wave Behavior 德布罗依波
Louis de Broglie (1892-1987) 德布罗依: If light can have both wave and particle behaviour, why not wave behaviour for all particles? 大胆假设,若光有波粒两像性,微粒也应有波粒两像性。
His equation: 给出如下关系式
   wave length = Planck’s constant / momentum 波长 = 普郎克常数  动量,即
                              = h/m
He talked about matter waves 称为物质波
Matter Wave物质波
Electron Wave and Baseball Wave电子波和棒球波
Uncertainty Principle 不确定性原理
Heisenberg(1901~1976)海森堡 postulated that there is a limit to how precisely we can measure both position and momentum. 不能同时精确测定微粒的位置和动量。
The measurement effects the object being measured. 测量过程本身会扰动被测物体。
Heisenberg’s Uncertainty Principle 不确定性原理关系式入下:
electron diffraction电子衍射
Electron Diffraction电子衍射
Statistic meanings of matter-wave物质波的统计解释
Schrondinger Equation薛定鄂方程
Solution to Equation 薛定谔方程解
wave function波函数
each wave function,  stands for a definite electron movement. 每个波函数代表一种电子运动方式。
each wave function, , for the electron in the H atom corresponds to an allowed energy. 每个波函数对应一个电子能级。
the energy of the electron is quantized. The concept of quantization enters naturally with the basic assumption of an electron matter wave; whereas the quantization in Bohr model is imposed as a postulate at the start. 电子能量量子化,其概念的本质是波粒两像性,而在玻尔理论中为假设。
Wave Functions波函数
each wave function can be interpreted only in terms of the ideas of probability几率. The square of ψ gives the intensity of the electron wave or probability of finding the electron at one point in space about the nucleus because the wave nature of the electron. 波函数的物理意义是几率概念,其平方为空间某处找到电子的几率。
the matter waves for the allowed energy states are also called orbitals. 限定于特定能量的电子波,也称轨道。
Wave Functions波函数
to solve Schondinger equation for an electron in a three dimensional world, three integer must be introduced. These quantum numbers n, l and m may have only certain combinations of  values,which define the energy states and and orbit available to the electron. Ψnlm is called atomic orbitals. 三维空间中求解薛定谔方程时,必然引入三个整数,分别为n、l、m,三个量子数的组合决定电子的能级和轨道。所以, Ψnlm也就是常说的原子轨道。
Principal Quantum Numbers主量子数
Principal Quantum Numbers主量子数
As many as 2n2 electrons can assigned to an electron shell.  一壳层中能容纳最多的电子数为2n2个。
An early notion used letters for major electron shells: K, L, M, N, and so on, corresponding to n=1, 2 , 3, 4,... 早期电子壳层用K、L、M、N表示,与主量子数n的对应值分别是1、2、3、4。
Azimuthal quantum number, l 角量子数
Subshell and the shape亚层与原子轨道形状

magnetic quantum number, m 磁量子数
Summary to the quantum numbers三个量子数比较
Implication of Quantum Number量子数的含义
     n: ① Energy quantization of electron; 电子能级
          ② the distance from nucleus — the subshell 电子层、电子亚层的离核距离
  l  shapes of atomic orbitals — subshell 角量子数决定亚层中原子轨道的形状。
      s — spherical; p — dumbbell; s轨道球形,p轨道哑铃状
    A measure of energy in an atom containing more than one electrons. 多电子原子中能级的决定因素
m and the orientations磁量子数以及原子轨道的取向
Electron Spin电子的自旋
Spin Quantum Number自旋量子数
the way to describe the electron states原子轨道的表示方法
Probability Density and Electron Cloud几率波和电子云
Probability Density几率密度
radial and angular wave function径向、角向波函数


Many-electron Atomic Structures多电子原子
The building-up Principle排布规则
Pauli Exclusion Principle泡利不相容原理
Lowest Energy Principle能量最低原理
Hund’s rule洪特规则
Order of orbital energy轨道能级图
Generalized Energy-level Diagram 鲍林能级图
For hydrogen atom, the energy depends only on n. 氢原子中,原子轨道的能级取决于主量子数n
For many-electron atom, the orbital energies depend on both n and l. 多电子原子中,原子轨道的能级取决于主量子数n和角量子数l。
the order of orbital energy is often shown in the generalized energy-level diagram多电子原子中,原子轨道的能级次序参见近似能级图.
Generalized energy-level diagram近似能级图
Energy Overlay能级交错

Ground State Electron configurations核外电子排布
Electron configuration —— spectroscopic notion 电子排布式
Orbital box diagram 原子轨道示意图
Valence electrons价电子
Electron configurations and periodicity电子构型与周期系
periodic table周期表

Classifications of elements in periodic table周期表中元素的分类
Variations of properties of elements within periods and families 元素性质递变规律

Atomic sizes原子半径

The diagram of variations in atomic radii of elements
Variation in atomic sizes
the metallic and nonmetallic behavior金属性和非金属性 of elements
Variations in ionization energies电离能

Variations in electron affinities 电子亲和能

Variations in electronegativity电负性
回复 支持 反对

使用道具 举报

发表于 2004-10-29 19:25:37 | 显示全部楼层
Chapter 5   molecular structure and crystal structure 分子结构和晶体结构
Ionic Bond离子键
The Characteristic of Ionic Bond离子键特征
Covalent Bond共价键

Covalent Bond共价键
Valence Bond theory (VB)价键理论
Molecular Orbital theory (MO)分子轨道理论
Valence bond theory价键理论
Formation of the hydrogen molecule 氢分子的形成
Two hydrogen atoms with antiparallel electron spins——ground state 基态

The two hydrogen atoms with parallel electron spins ——repulsive state斥态
Formation of a valence bond形成共价键的条件
the electron spins of both bonding atoms must be paired.  成键原子的未成对电子自旋相反
maximum overlap最大重叠原理: two atoms are  arranged to give the greatest orbital overlap. 成键原子的原子轨道重叠程度(面积)越大,键越牢。
symmetry match对称性匹配原理: the overlapping    orbitals must have the identical symmetry. 原子轨道的重叠,必须发生于角度分布图中正负号相同的轨道之间。

The characteristic of covalent bonds 共价键的特征
Saturation饱和性——no bonding between the paired  electrons and any other electron within an orbital电子配对后不再与第三个电子成键
Orientation方向性——the maximum orbital overlap occurs orientationally except s orbital. 除s轨道,最大重叠必有方向
Types of covalent bonds 类型
σ bond: head-to-head overlap along the bond axis. 原子轨道沿键轴方向“头碰头”式重叠;
π bond: shoulder-to-shoulder overlap   原子轨道沿键轴 方向“肩并肩”式重叠


Bond parameters 键参数


Hybrid orbital theory 杂化轨道理论
Hybridization杂化
Hybridization杂化: the process in which the hybrid orbitals are formed. 上述过程叫杂化。
The number of hybrid orbitals杂化轨道数: is equal to the number of atomic orbitals during hybridization.等于参加杂化的原子轨道数目。


Hybrid orbitals in bonding杂化轨道的性质: the hybrid orbitals are equivalent, degenerate orbitals. 杂化轨道是等价轨道。
Types of hybrid orbitals 杂化轨道类型
sp hybridization——HgCl2
sp2 hybridization ——BF3
sp3 hybridization —— CCl4
sp hybridization——HgCl2
sp2 hybridization ——BF3
sp3 hybridization —— CCl4


Unequivalent sp3 hybridization不等性sp3杂化





Molecular Orbital Theory 分子轨道理论

Principles about molecular orbital theory分子轨道原理
the number of molecular orbitals produced is always equal to the number of atomic orbitals 分子轨道数量等于原子轨道数量
the electrons are assigned to orbitals of successively higher energy. The filling of electrons in orbitals comply with the lowest energy principle, Pauli exclusion principle and Hund’ rule 分子中的电子排布满足能量最低原理、泡利不相容原理、洪特规则

atomic orbitals combine to form molecular orbitals most effectively when the atomic orbitals are of similar energy, have maximum orbital overlap and the match of symmetry. 原子轨道在形成分子轨道时,应满足最大重叠、对称性匹配
Bonding and antibonding molecular orbitals 成键轨道和反键轨道


Type of molecular orbitals分子轨道的类型
 molecular orbitals
 molecular orbitals

The molecular orbitals of diatomic molecules
Molecular orbitals of oxygen

Intermolecular forces 分子间力
    Intermolecular forces are attractive forces between molecules, usually weak, and originate the polarities of molecules. 分子间存在着一种较弱作用力,叫分子间力。分子间力源于分子的极性。
Polar molecules and nonpolar molecules 极性分子和非极性分子
molecules are neutral, carrying the equal amounts of opposite charges. These charges are scattered within the molecule, but there must exist two centers for positive charges and negative charges respectively. 电荷的分布是分散的,但可确定其中心—正、负电荷中心。

If the centers for the positive charges and negative charges are superposed, the molecule is nonpolar.
Otherwise, it is polar.
正、负电荷中心重合的分子是非极性分子: 正负电荷中心不重合的分子是极性分子。
The dipole moment偶极矩
The strength of the molecular polarity depends upon the distance between two positive charge centers, the charges of the poles. 分子极性的强弱决定于正、负电荷中心的距离和电荷量。The dipole moment is defined as: 定义分子
的电偶极矩为




Intermolecular forces分子间力
Orientation force 取向力
Sometimes called Keeson force  The polar molecules have the permanent dipole固有偶极     

induction force 诱导力
——the forces existing between polar molecules, and nonpolar molecules and polar molecules respectively 极性分子与非极性分子、极性分子之间的作用力

dispersion force色散力
——the force between nonpolar molecules. It comes from the instantaneous dipoles 瞬时偶极

Summary to intermolecular forces



Characteristics of intermolecular forces
1. weak interaction 弱力. is less 1~2 order of magnitude 小1~2个数量级 than that in a chemical bonding. For example, in H2O, the energy for intermolecular forces are 47.28kJ.mol-1, whereas, E(OH)=463kJ.mol-1
Characteristics of intermolecular forces
2. near-distance forces 短程力. is effective in the distance of 300pm to 500pm, and inversely proportional to r7.
3. no saturation and orientation 无方向性和饱和性。

Hydrogen Bonding氢键
        在X—H……Y中,H——与电负性大、半径小的元素(X)成强极性共价键的氢;Y——有孤对电子、电负性大、半径小的元素(F、O、N)。


The characteristics of hydrogen bonding 氢键的特性
weak interactions 弱作用力,slightly greater than van der Waal’s forces and generally less than 40kJ.mol-1  与分子间力相当;小于40 kJ.mol-1。
2.    Oriented 有方向性(because of the lone pair on Y atoms Y的孤对电子有方向);saturated 有饱和性


Crystal geometry晶体结构

Crystal structures 晶体结构
Crystal lattice晶格—the space group made up of the particles arranged in space晶体粒子在空间排列成的点群。
The node in the crystal lattice晶格结点—the points occupied by the particles in the lattice.晶格中排有微粒的点
Unit cell晶胞
Unit cell晶胞—the smallest, repeating unit which has all of the symmetry characteristic of the way atoms arranged.由晶格结点组成的最基本的晶格







Crystal types of elements in the periodic table
Crystal geometry of solids晶体对称性
cubic立方
tetragonal四方
orthorhombic正交
hexagonal六方
rhombohedral菱型
monoclinic单斜
triclinic三斜
Cubic system立方晶系
simple cubic简单立方;
body-centered cubic体心立方;
face-centered cubic面心立方.
Cesium chloride (CsCl) structure氯化铯结构
The descriptions of cesium chloride structure
unit cell晶胞: simple cubic,  not a body-centered cubic.
coordination number配位数: 8
each unit has 1 chloride anion and 1 cesium cation.
the number of chloride ions in the cell:
  the stoichiometric ratio is 1 : 1.

Zinc sulfide (ZnS) structure
Ion polarization离子极化
Factors affecting the ion polarizibility
charge: Al3+ > Mg2+ > Na+;极化力
size: I– > Br– > Cl– > F–;变形性
the electron configurations in the valence electron shell.价层电子的构型。
回复 支持 反对

使用道具 举报

发表于 2004-10-29 19:26:41 | 显示全部楼层
Chapter  3   Electrochemistry 电化学
Terms Used in Electrochemistry 电化学术语
Terms used in electrochemistry 电化学专业词汇
Redox reactions 氧化还原反应
Oxidizing and Reducing Agents氧化剂和还原剂
1. Oxidizing Agent: 氧化剂
The species which causes oxidation is called the oxidizing agent. The substance which is oxidized loses electrons to the other. The oxidizing agent is always reduced. 氧化剂发生还原反应。
2. Reducing Agent: 还原剂
The species which causes reduction is called the reducing agent. The substance which is reduced gains electrons from the other. The Reducing agent is always oxidized. 还原剂发生氧化反应。
Common reducing and oxidizing agents 常见氧化剂和还原剂
Oxidation numbers氧化数
For an atom in its elemental form (Na, O2, Cl2 …) oxidation number = 0 元素的氧化数为0。
2. For a monatomic ion:  oxidation number = ion charge 单原子离子的电荷等于氧化数。
3. The sum of oxidation number values for the atoms in a compound equals zero.  The sum of oxidation number values for the atoms in a polyatomic ion equals the ion charge. 化合物的氧化数为0,多原子离子中所有元素的氧化数之和等于离子电荷。
Rules for specific atoms or periodic table groups.周期表中元素的氧化数
1.  For fluorine: Ox . no. = 1 in all compounds 氟为1。
2.  For oxygen: Ox . no. = 1 in peroxides 过氧化物中为1。Ox. No. = 2 in all other compounds (except with F) 氧化物中为2。
3.  For Group 7A 卤素:        Ox . no. = 1 in combination with metals, nonmetals (except O) 金属、非金属元素卤化物中为1, and other halogens lower in the group.
4.  For Group 1A 碱金属:        Ox . no. = +1 in all compounds 为+1。
5.  For Group 2A 碱土金属: Ox . no. = +2 in all compounds 为+2。
6.  For hydrogen:        Ox . no. = +1 in combination with nonmetals 与非金属化合为+1,Ox . no. = 1 in combinations with metals and boron 与金属和硼化合为1。
Balancing Redox reactions 氧化还原反应的配平
Redox Reactions - Ion electron method.离子电子法
Under acidic condition 酸性条件
    Balance the half reaction separately except H & O’s.
        Balance Oxygen by H2O 用水分子平衡氧原子。
        Balance Hydrogen by H+用H+平衡氢原子。
        Balance  charge by e  加上电子平衡电荷。
   Add the half-reaction together.
Under basic condition 碱性条件
   the same procedure as the acidic, except 处理如酸性条件,注意:
Examples 例题
The Activity Series of Metals金属活泼程度
Metals can be placed in order of their tendencies for losing electrons.  This is called the activity series.
Galvanic Cells原电池
Galvanic Cell原电池
A galvanic cell is an energy-producing apparatus, in which the oxidation and reduction reaction occur in two separate compartments, often called half-cells. 原电池是将氧化还原反应的化学能转化为电能的装置。
Completing the circuit 盐桥连接
盐桥的作用:  In order for electrons to move through an external wire, charge must not build up at any cell.  This is done by the salt bridge in which ions migrate to different compartments neutralize any charge build up.

Cell Assembly电池构造
Electron transfer can occur if the circuit is closed. 电路闭合,电子流动。
Parts:  
Two conductors 两个电极
Electrolyte solution 电解质溶液
Salt Bridge / Porous membrane 盐桥或多孔膜
How a galvanic cell works原电池工作原理
Zn-Cu Voltaic Cell锌-铜原电池

Line Notation Convention电池符号
Line Notation of Examples电池符号
Electrode Potentials电极电位

Standard electrode potential标准电极电位

Reference electrode参比电极
Potential values of some electrodes 一些电极的电极电位

Meanings of the standard electrode potential 标准电极电位的意义
Use of the table of standard electrode potentials 电极电位表的使用

Nernst equation 能斯特方程式

Using Nernst equation


relationship between ΔrGmo and cell potentials ΔrGmo与电动势之间的关系

Using Electrode Potentials


Predicate the spontaneity of a redox预测反应的自发性




Electrode Potential or Latime Diagram元素电位图


Lead-Acid Battery铅酸电池
The overall electrochemical reaction is 电池总反应
PbO2(s) + Pb(s) + 2SO42-(aq) + 4H+(aq)  2PbSO4(s) + 2H2O(l)
        for which 电动势
Ecell = ERHS - ELHS = (+1.685 V) - (-0.356 V)
= +2.041 V.
Wood or glass-fiber spacers are used to prevent the electrodes form touching. 电极衬有木头或玻璃纤维以防电极腐蚀。
A picture of car battery汽车电池
An Alkaline Battery碱性电池
在普通电池中Anode: Zn cap: 锌负极
Zn(s)  Zn2+(aq) + 2e-
Cathode 正极: MnO2, NH4Cl and carbon paste 氯化铵与碳粉的糊状物:
2 NH4+(aq) + 2 MnO2(s) + 2e-  Mn2O3(s) + 2NH3(aq) + 2H2O(l)
Graphite rod in the center - inert cathode 堕性石墨电极位与中央.
Alkaline battery, NH4Cl is replaced with KOH 氢氧化钾替代了氯化铵.
Anode负极: Zn powder mixed in a gel: 锌粉胶

Fuel Cells燃料电池
Direct production of electricity from fuels occurs in a fuel cell. 燃料直接转换成电能。
H2-O2 fuel cell was the primary source of electricity on Apollo moon flights. 阿波罗登月采用氢氧燃料电池。
Cathode 正极: reduction of oxygen: 氧还原
2 H2O(l) + O2(g) + 4e-  4OH-(aq)
Anode 负极:
2H2(g) + 4OH-(aq)  4H2O(l) + 4e-
回复 支持 反对

使用道具 举报

发表于 2004-10-29 19:27:37 | 显示全部楼层
Chapter  7   Coordination Compounds 配位化合物
Definition 定义
A coordination compound 配位化合物 is one in which the metal ion or atom is bonded to one or more neutral molecules or anions so as to be a defined and integral structural unit. Often, we call it coordination complex. 配位化合物是中心原子与一定数量的分子或离子形成的具有一定的空间结构的配离子或分子,有时称络合物。
Central Atom, Ligand, and Coordination Bonding 中心原子、配体和配位键
The metal ion or atom is called central ion or atom. 金属原子或离子为中心离子或原子
The molecules or ions bonded to the central metal ion are called ligands 配体. For example, NH3, Cl etc. 与中心原子键合的分子或离子称为配体。
The ligands donate the lone pair electrons to the central metal to form the covalent bondings, called coordination bondings. 配体提供原子对与金属原子形成的共价键称为配位键。
Coordination Ion, Coordination Atom 配离子,配位原子
Mn+ + NH3  [MNH3]n+, coordination ion 配离子
In ligands, the atom which donates its lone pair electrons to the central ion is called coordination atom 配体中,提供电子对与金属原子形成配位键的原子,称 为配位原子.
If a ligand has more than one coordination atom is called polydentate or “many-toothed” 配体中,若有多个配位原子,称为多啮配体.
Chelate螯合物
the complex formed between a central and one or several polydentate ligand(s) 多啮配体 is called a chelate.  与多啮配体形成的配合物,称为螯合物。For example, Cu(en)22+, 二乙二胺合铜(II)
    Here,    en:  NH2CH2CH2NH2, ethylenediamine 乙二胺.
Some Common Ligands常见配体
Bidentate and Polydentate Ligands
Nomenclature of Coordination Compounds 配合物命名
if a coordiantion compound is ionic, name the cation first and the anion second. 先命名阳离子,再阴离子
name the ligands first, followed by the central metal. 在配离子中,先命名配体,再命名金属。
name the ligands alphabetically按字母顺序命名配体. Negative ligands (anions) have names formed by adding “o” to the stem name of the group. For example, O2 oxo, NO3 nitrato.
use the numeric prefix to indicate the number of ligands present. 用数字前缀表示配体数量。
   2: di 或 bis;3: tri 或 tris;4: tetra 或 tetrakis etc.
Examples of the Names of Complexes 配合物命名范例
K3[Ag(S2O3)]
   potassium bis(thiosulfato)argentate(I). 二硫代硫酸根合银(I)酸钾。
[Co(en)(NO2)Cl2] dichloroethylenediaminenitrocobaltate(III).二氯二硝基乙二胺合钴(III)配离子。
[Cu(NH3)4]SO4
     tetraamminecopper(II) sulfate 硫酸四氨合铜(II)
[Co2(CO)8]
    octacarbonyl dicobalt(0) 八羰基合二钴。
Valence Bond Theory价键理论
The nature of metal-ligand bond is the coordination covalent bond. 配位键本质上是共价键。
The electron pair from the ligand is shared with the metal. 配体提供电子对与金属离子共享。
This electron pair occurs one of several equivalent hybrid orbitals on the metal. 电子对占据了金属离子的某个杂化轨道。
The Spatial Structures of Complexes配合物的空间构型
The Complexes of d10 Metal Ion
The Complexes of d8 Metal Ion(Tetrahedron)
The Complexes of d8 Metal Ion(Planar Square)
Tetrahedral and planar square
The Complexes of d5~7 Metal Ions(Octahedron)
The Complexes of d5~7 Metal Ions(Octahedron)
Inner Orbital Complexes and Outer Orbital Complexes
inner orbital complex 内轨型配合物, sometimes called low spin complex 低自旋配合物
   The d orbitals from inner d subsell are hybridized with the outer s and p orbitals to form of a set hybrid orbitals. 内层d轨道与外层s、p轨道杂化,形成杂化轨道。
Outer orbital complex 外轨型配合物, sometimes called high spin complex 高自旋配合物
Octahedral complexes
Crystal Field Theory 晶体场理论
d Orbitals in Octahedral Field
Split Energy , 分裂能
As ligands approach the metal to form bonds, there are repulsion between the electrons of the metal and ligands. This repulsion between the positive metal ion and negative ligand lone pair are electrostatic. Thus, the degenerate d orbitals of a free atom or ion are split.
配体靠近中心离子成键时,配体中的孤对电子与中心离子的d电子互相排斥,引起简并的d轨道发生分裂。
Split Energy in Octahedral Field
The Magnitude of Split Energy分裂能的大小
the nature of the ligands; 配体性质
    Different ligands have the different split energy.
the charge on the metal ion; 金属离子的电荷
    the more positive the charge is, the greater split energy.
whether the metal is in the first, second or third row of transition elements..金属原子的周期数
the 2nd or 3rd metal ions have larger split energy.
Weak Field Ligands and Strong Field Ligands弱场配体和强场配体
Ligands which cause only a small degree of crystal field splitting are termed weak field ligands 导致晶体场分裂能小的配体,称为弱场配体, otherwise are strong field ligands 导致晶体场分裂能大的配体,称为强场配体.
Spectrochemical Series 光化学序列
Weak Field and Strong Field
The Split Energies of 1st Series of Transition Metal Ions
High-spin and Low-spin Complexes 高自旋、低自旋配合物
Electron Pairing Energy and Split Energy电子成对能和分裂能
According to Hund’s rule, it requires the electron pairing energy P 电子成对能 when the unpaired electrons in Mn2+ ion are forced to be paired. 根据洪特规则,判断Mn2+的电子是否成对,就引入电子成对能这一物理量。
Thus, the complex is high spin if &#61508; is less than the P, the weak field complex, &#61508; < P, 弱场配合物, 高自旋配合物, and the complex is low spin if &#61508; is greater than the P, the strong field complex. &#61508; > P, 强场配合物, 低自旋配合物
Crystal Field Stabilization Energy 晶体场稳定化能(CFSE)
CFSEs of Complexes配合物的晶体场稳定化能
Magnetic Moments of Complexes配合物的磁距
Molecules such as O2 and ions [Fe(H2O)6]2+ that contain unpaired electrons are paramagnetic 顺磁性. Whereas compounds having no unpaired electrons are diamagnetic 逆磁性.  拥有未成对电子的分子是顺磁性分子;分子中若没有未成对电子,称为逆磁性分子。
The size of the magnetic moment of a system containing unpaired electrons is related directly to the number of such electrons. 分子磁距的大小与未成对电子数成正比。
Paramagnetic and Diamagnetic 顺磁性和逆磁性
How to Use Crystal Field theory?
The color of complexes配合物的颜色
Enthalpies change of hydration for M2+ ions, in kJ&#61655;mol&#61485;1. 二价金属离子的水合能
Color of Complexes
Complementary Color Theory颜色互补理论
When an object absorbs some component color light of sunlight, we see the complementary colors 互补色 of the object. 物体吸收太阳光中的某一组分光后,其颜色与吸收的组分光成互补关系。
For example, the blue color of the [Cu(NH3)4]2+ ion results because this ion absorbs orange and red light, leaving the complementary colors of blue. 如[Cu(NH3)4]2+离子吸收橙红色后,显橙红色的互补色——蓝色。
Color Circle
Enthalpies of Hydration for M2+ Ions金属离子的水合能
Hydrated transition ions
Coordination Equilibrium配离子的配合平衡
Formation constant and disassociation constant稳定常数和不稳定常数
Calculations
回复 支持 反对

使用道具 举报

发表于 2004-10-29 19:28:21 | 显示全部楼层
Chemistry of the elements
General trends in the periodic table
The periodic table
81 naturally occurring elements without radioactivity.
4 actinide elements.
the positions of elements in periodic table
Periods, or Series周期数 = n (lines in periodic table)
Groups or Families族数 (columns in periodic table)
Main groups(A)主族元素— the sum of the number of electrons in the ns、np subshell.
Transition elements(B)过渡元素— the sum of the number of electrons in outmost the ns subshell and in the (n-1)d subshell of the next shell.
Noble gas 惰性气体— ns2 or ns2np6。
元素的第一电离能变化趋势图
元素的原子半径变化趋势图
元素电负性变化趋势图
Formal oxidation states of elements(1)
Formal oxidation states of elements(2)
Anomalies in the periodic table
The anomalous properties of the elements in the second period.第二周期元素的反常现象
the “anomalies” in the post-transition element series related to the d&#61485;block contraction. 第四、五、六周期的p区元素的反常现象
the effects of the lanthanide contraction. 镧系收缩
diagonal relationship between lithium and magnesium, beryllium and aluminum, boron and silicon. 对角线规则
the inert pair effect. 隋性电子对效应
Anomalies in the periodic table
Variability in the oxidation state of transition element. 过渡元素氧化态的多样性
trends in the basicity and electropositivity of elements. 元素的碱性和电正性的变化趋势
trends in bond type with position of the elements in the table and with oxidation state for a given element. 周期表中元素位置及氧化态与键型变化的趋势
trends in stability of compounds. 元素的化合物稳定性变化趋势
trends in the stability of coordination complexes. 配合物稳定性变化趋势
回复 支持 反对

使用道具 举报

发表于 2004-10-29 19:36:36 | 显示全部楼层
楼主大几啊?审我的时候我只交了半学期成绩,算是大一在读。他没按成绩单上的问,因为上面的课都很不时间。考官问我正在读什么,我说无机化学,物理,高数之类的。他就问我无机化学都学了什么,然后就由我来说,主动权在自己。不过和碰见的人有关系。我是化学专业的,恰好是双语教学试点,真可惜不是德语。试题的内容不可以透露的。但它们只是后来你们交流的材料,我们当时谈了原子方面的东西,涉及了一点量子化学的知识,都是很基础的。我觉得只要把每门课最基础最核心的东西准备一下就可以了,当然这只是我这个在读生的看法,每个人情况都不同的。上面的东西要感谢我的无机化学老师了。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|ABCDV网站,版权所有:北京佳景时代文化有限公司 ( 京ICP备19037940号-1 |||| 京公网安备11010802012322 |||| 工信查询网址: https://www.beian.miit.gov.cn )

GMT+8, 2025-12-18 19:56 , Processed in 0.076459 second(s), 15 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表